Course Section 1 Content Section 1 Content Left Section 1 Content Right Credit Type: Course ACE ID: OOSL-0019 Version: 4 Organization's ID: MAT251 Organization: StraighterLine Location: Online Length: 14 weeks (75 hours) Minimum Passing Score: 70 ACE Credit Recommendation Period: 12/1/2024 - 11/30/2027 5/1/2021 - 11/30/2024 5/1/2018 - 4/30/2021 5/1/2014 - 4/30/2018 2/1/2011 - 4/30/2014 Credit Recommendation & Competencies Section 2 Content Section 2 Content Left Section 2 Content Right Level Credits (SH) Subject Lower-Division Baccalaureate 3 calculus II Description Section 3 Content Section 3 Content Left Section 3 Content Right Objective: The course objective is to acquaint students with the principles of calculus such as techniques of integration; application of integration; exponential and logistic models; parametric equations and polar coordinates; sequence and series; and vector and geometry. Learning Outcomes: apply L’Hôpital’s rule to find the limits of different indeterminate forms compute hyperbolic functions at a given point use hyperbolic identities compute the derivatives of hyperbolic functions solve integration problems using different techniques of integration (integration tables, u-substitutions, trigonometric functions, partial fraction, trigonometric substitutions, and trapezoidal rule) apply integral calculus to compute the average value of function, volumes, arcs and lengths use various tests to determine the convergence and divergence of sequences and series apply Taylor and McLaurin series for polynomial approximations demonstrate convergence and divergence of power series solve homogeneous differential equations use differential equations to solve growth and decay problems solve problems based on eliminating parameters, conversion between polar and Cartesian forms, spirals and circles, polar coordinate systems, and rose curves sketch parametric and polar curves apply differentiation and integration to parametric equations and polar functions apply dot product and cross product to vectors in r2 and r3 apply differentiation to vector functions. General Topics: Indeterminate forms Hyperbolic functions and graphs Techniques of integration Applications of integral calculus Sequences and series Differential equations Parametric equations and polar coordinates Vector calculus Instruction & Assessment Section 4 Content Section 4 Content Left Section 4 Content Right Instructional Strategies: Audio Visual Materials Computer Based Training Methods of Assessment: Examinations Quizzes Supplemental Materials Section 5 Content Section 5 Content Left Section 5 Content Right Equivalencies Section 6 Content Section 6 Content Left Section 6 Content Right Button Content Rail Content 1 Other offerings from StraighterLine View All Courses College Credit Opportunities> Page Content